Notes on AI Bias

Machine learning is the new centre of tech, and like all big new things there are issues. ‘AI bias’ is much-discussed right now: machine learning finds patterns but sometimes it finds the wrong one, and it can be hard to tell. This is a real concern, but it’s also manageable as long as we pay proper attention to it, and will probably look much like similar issues in previous waves of automation.

Read More

Smart home, machine learning and discovery

Smart home today looks a lot like the world of kitchen gadgets a few generations ago - and so does machine learning. We have a bunch of cheap commodity components (DC motors! Cameras! Wifi chips! Voice recognition!) and we’re trying to work out how to bolt them together into things that makes sense. There are lots of experiments - some things will be the toasters or benders of the future, and some will be the electric can-opener.

Read More

Cameras that understand: portrait mode and Google Lens

Machine learning means smartphones will (nearly) always take perfect pictures. But it also means they might understand what’s in the picture and why you took it. So what do they do with that? What does the discoverability and communication of AI look like, if you can answer lots of questions but might still be wrong?

Read More

Is Alexa working?

Amazon’s Alexa has been a huge, impressive and unexpected achievement. Amazon created a category from scratch and left both the AI leader Google and the device leader Apple scrambling in its wake. It’s now sold 100m units. So far, though, this success is pretty contingent - we do still have to ask what Amazon actually gains from this. What do consumers do with these devices that helps Amazon? What fundamental strategic benefit does it get? Amazon has put an end-point into tens of millions of homes - what does it do with it?

Read More

Does AI make strong tech companies stronger?

Machine learning is probably the most important fundamental trend in technology today. Since the foundation of machine learning is data - lots and lots of data - it’s quite common to hear that the concern that companies that already have lots of data will get even stronger. There is some truth to this, but in fairly narrow ways, and meanwhile ML is also seeing much diffusion of capability - there may be as much decentralization as centralization. 

Read More

Ways to think about machine learning

We're now four or five years into the current explosion of machine learning, and pretty much everyone has heard of it, and every big company is working on projects around ‘AI’. We know this is a Next Big Thing. I don't think, though, that we yet have a settled sense of quite what machine learning means - what it will mean for tech companies or for companies in the broader economy, how to think structurally about what new things it could enable, and what important problems it might actually be able to solve.

Read More